
The Role of Formal Methods in High-Grade

InfoSec Evaluations

Benjamin W. Long

School of Information Technology and Electrical

Engineering

The University of Queensland

Brisbane, Australia 4072

Information Networks Division
Defence Science and Technology Organisation

DSTO–GD–0456

ABSTRACT

With the increasing use of computer systems in governmental, commercial and
industrial equipment, we must be sure that these systems remain secure. The
Common Criteria is an internationally recognised criteria for evaluating IT
products with security functionality. To achieve a high level of assurance from
the Common Criteria, formal methods should be applied in the development
process. This report concentrates on formal methods support for development
and evaluation of security-critical systems in the Common Criteria. In par-
ticular, the Defence Signal Directorate (DSD) is charged with the oversight of
the security evaluations program in Australia. The report attempts to indicate
what DSD should know about formal methods for the high-grade evaluations,
and where they can find out more as desired.
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The Role of Formal Methods in High-Grade InfoSec
Evaluations

EXECUTIVE SUMMARY

This report was prepared for AS InfoSec DSD by the University of Queensland under
contract from the DSTO (arising from task JW 02/106). The aim of the contract was
to conduct a survey of formal verification methodologies and how those methodologies
relate to the Common Criteria for high assurance evaluation. The report is aimed at
those readers who are familiar with development/certification procedures, but are not
especially familiar with formal methods and their role in that process. In particular, the
Defence Signal Directorate (DSD) is charged with the oversight of the security evaluations
program in Australia. The report attempts to indicate what DSD should know about
formal methods for the high-grade evaluations, and where they can find out more as
desired.

The Common Criteria is an internationally recognised set of criteria for evaluating
IT products with security functionality. The criteria defines seven Evaluation Assurance
Levels which identify increasing levels of assurance and the requirements that must be
satisfied by a product in order to achieve them. For a product to achieve a high level of
assurance the criteria demands strict application of formal methods to the development
process.

Part 2 provides a brief review of the developmental requirements outlined by the Com-
mon Criteria. This highlights where the requirements for formal analysis enter, but also
should help to clarify the actual statements of requirement. A selection of comments on the
Common Criteria are given in Part 3, together with a brief discussion of the tool support
which would be ideal in meeting the formal requirements for high-grade evaluations.

In Part 4 we discuss formal specification methods. We take the view that there are two
main candidates for non-trivial systems, which differ in whether one primarily focusses on
the events the system can engage in or the states through which it can evolve. We try
to expose their relative merits through examples. The combination of the two is possibly
interesting as a research area.

Having specified the system and desired critical properties, the next step is to verify
that the system model indeed satisfies those properties. Again there are a number of
alternative methods available, depending largely on the degree of automation compared
to the degree of user interaction. Part 5 explains the trade-off made when a given method
is chosen.

Finally, Part 6 lists the formal methods which have been used by various organisations
when developing security products to high levels of assurance. It is interesting to note that
there seems to be little supporting documentation freely available in the public domain.
At least in part this is due to commercial confidentiality.
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Part 1

Introduction

With increasing use of computer systems in governmental, commercial, and industrial
equipment, we must be sure that these systems remain secure. A secure computer system
provides three fundamental properties [46]:

• confidentiality — information is disclosed only according to policy;

• integrity — information is not destroyed or corrupted and the system performs cor-
rectly; and

• availability — system services are available when they are needed.

For example, a governmental system vulnerable to a breach of confidentiality could be
hacked by an intruder, allowing the intruder to learn a vital stratagem; a commercial bank
system vulnerable to a breach of integrity could process bogus transactions that benefit or
disfavour account holders; and combat systems attacked by a destructive intruder could
suffer from a lack of availability and might not be able to give a timely command in order
to release a defensive projectile.

There are numerous products available that aim to achieve such security properties
through various security enforcing functions. For example, a data diode ensures that
information travels in only one direction on a communication channel, thus preventing
unwanted ‘leakage’ of information in the opposite direction. Users of such products need
to know that they successfully implement the desired security function without introducing
any new vulnerabilities. To cater for this need, assurance is attainable from certification
bodies whose purpose is to evaluate security products against given security evaluation
criteria.

In the late 1990s, the United States, together with the European Union and Canada,
released the Common Criteria (CC) [1], an internationally recognised set of criteria for
evaluating IT products with security functionality. It was based on criteria (TCSEC [2],
ITSEC [3], and CTCPEC [4]) previously devised by the co-operating parties. The CC de-
fines seven Evaluation Assurance Levels (EAL1 through EAL7), which identify increasing
levels of assurance and the requirements that must be satisfied by a product, or target Of
Evaluation (TOE), in order to achieve them. For TOEs to achieve high EALs, the CC
demands strict application of formal methods to the development process.

1
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The term “Formal methods” covers quite a range of possible techniques. Underlying
them all is the use of mathematically well-defined languages to capture the system design,
and a consistent logic in which to derive its consequences abstractly. Through this medium
the developer is forced to confront the problem of describing the system unambiguously in
a language which manifestly exposes the failure to do so. Moreover, abstract reasoning can
be considered as pattern-matching each step in the derivation to a consistent rule set, and
therefore – at least when enforced through proof tools – does not allow unstated contextual
information or prejudices to influence the analysis. Thus, there are two immediate benefits
of the use of formal methods in any development process:

1 increased understanding of the system, at an early enough stage so that inadequacies
can be corrected cost-effectively; and

2 assurance that any critical properties which have been stated and proved can be
trusted.

Employing formal methods tools in the certification process brings up another benefit:

3 the evaluator has a complete treatment of the required analysis which can be checked
to be consistent by the tool, and thus can concentrate on the completeness of the
modelling and verification regime.

Clearly there is much to be gained from the simple requirement of mathematical precision
and consistency.

It is not at all surprising, then, that the use of formal methods is mandated in preparing
high-grade evaluations. In particular, there are two settings where the CC requires the
application of formal methods:

1 formal specifications are required for producing precise unambiguous descriptions of
the TOE’s behavioural properties; and

2 formal verification is required to prove a correspondence between two or more of
the specifications, providing convincing evidence that critical functionality is imple-
mented through the entire development process.

The actual requirement depends on the EAL sought.

This report concentrates on formal methods support for development and evaluation
of security-critical systems in the Common Criteria. It is aimed at those readers who know
about development/certification procedures, but are not especially familiar with formal
methods or their role in that process. In particular, the Defence Signal Directorate (DSD)
is charged with the oversight of the security evaluations program in Australia. The report
attempts to indicate what DSD should know about formal methods for the high-grade
evaluations, and where they can find out more as desired.

Part 2 provides a brief review of the developmental requirements outlined by the Com-
mon Criteria. This highlights where the requirements for formal analysis enter, but also
should help to clarify the actual statements of requirement. A selection of comments on

2
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the Common Criteria are give in Part 3, together with a brief discussion of the tool support
which would be ideal in meeting the formal requirements for high-grade evaluations.

In Part 4 we discuss formal specification methods. We take the view that there are two
main candidates for non-trivial systems, which differ in whether one primarily focusses on
the events the system can engage in or the states through which it can evolve. We try
to expose their relative merits through examples. The combination of the two is possibly
interesting as a research area.

Having specified the system and desired critical properties, the next step is to verify
that the system model indeed satisfies those properties. Again there are a number of
alternative methods available, depending largely on the degree of automation compared
to the degree of user interaction. Part 5 explains the trade-off made when a given method
is chosen.

Finally, Part 6 lists the formal methods which have been used by various organisations
when developing security products to high levels of assurance. It is interesting to note that
there seems to be little supporting documentation freely available in the public domain.
At least in part this is due to commercial confidentiality.
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Part 2

Common Criteria: Development
Requirements

A CC evaluation of a TOE depends on its conformance to a specific set of security require-
ments. The requirements to which the TOE is to conform are firstly devised and presented
within a document called a Security Target (ST) which is evaluated to demonstrate that
it is complete, consistent and technically sound. It is then suitable as the basis for the
corresponding TOE evaluation.

Security requirements are divided into several classes. The class containing assurance
requirements associated with the development process of the TOE is the ADV class [1] (see
also Part 2.2. Within this class are requirements demanding certain levels of formality to
be used for various stages of development.

Section 2.1 introduces fundamental CC terminology used within the security target,
Section 2.2 summarises the requirements contained in the ADV class, Section 2.3 defines
what is meant by the different levels of formality discussed within the ADV class, and
Section 2.4 discusses the current state of play for following the criteria set out in the CC
and presents areas still open for research.

2.1 Security Target

As seen in Figure 1 (which appears in Part 2 of the CC), a security target for a
TOE contains definitions of the security environment, security objectives and security
requirements, and a summary specification [1] as follows.

• The security environment defines the context in which the TOE is intended to be
used and identifies assumptions, threats, and organisational security policies.

• The security objectives address all of the concerns raised from analysis of the security
environment and determine whether they are addressed directly by the TOE or by
its environment.

• Security requirements are refined from the security objectives which, if met, will
ensure that the TOE can meet its objectives.

5
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Security requirements are stated as both functional requirements and assurance re-
quirements:

– functional requirements identify what the system must do about ensuring secu-
rity in terms of a system’s technical features and capabilities; whereas

– assurance requirements identify what developers must do to prove that the
system really does what is intended in terms of procedures to be performed
and documents to be prepared [46, 42].

The TOE Security Policy (TSP) is essentially a collective name for a collection of
these requirements. Note that in this part the ST can optionally state security
requirements for the IT environment.

• The summary specification provides a high-level definition of the TOE Security Func-
tions (TSF) claimed to meet the functional requirements, and assurance measures
taken to meet the assurance requirements.

Assurance Development

Security Target

Environment

Security
Objectives

Functional
Requirements

(TSP)

TOE Summary
Specification

Functional
Specification

High-Level Design

Low-Level Design

Implementation
Representation

TSP Model 
ADV_FSP

ADV_HLD

ADV_LLD

ADV_IMP

ADV_SPM

ADV_SPM
ADV_RCR

ADV_RCR

ADV_RCR

ADV_RCR

Internals

Figure 1: The ST and ADV and flows between
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2.2 The ADV class

The ADV assurance class [1] associated with the development process of the TOE
defines requirements for the stepwise refinement of the TSF from the TOE summary
specification in the ST down to actual implementation. The ADV class is divided into
seven families of requirements, again seen in Figure 1, each one corresponding to one of
the following parts of the development process.

• The Functional Specification describes the TSF, and must be a complete and accurate
instantiation of the TOE security functional requirements.

• The High-Level Design is a top level design specification that refines the TSF func-
tional specification into the major constituent parts of the TSF. It identifies the basic
structure of the TSF and the major hardware, firmware, and software elements.

• The Low-Level Design is a detailed design specification that refines the high-level
design into a level of detail that can be used as a basis for programming and/or
hardware construction.

• The Implementation Representation is the least abstract representation of the TSF. It
captures the detailed internal workings of the TSF in terms of source code, hardware
drawings, etc., as applicable.

• The Representation Correspondence is a demonstration of mappings between all
adjacent pairs of available TSF representations, from the TOE summary specification
through to the least abstract TSF representation that is provided.

• The TSF Internals requirements specify the requisite internal structuring of the TSF.

• The TOE Security Policy Model is a structured representation of security policies
of the TSP, and is used to provide increased assurance that the functional specifi-
cation enforces the security policies of the TSP – and, ultimately, the TOE security
functional requirements. This is achieved by correspondence mappings between the
functional specification, the security policy model, and the security policies that are
modelled.

Table 1 lists all components from the seven families of requirements, and identifies
which component (if any) from each family is needed to fulfil the assurance requirements
for achieving a particular EAL.

2.3 Levels of Formality

The functional specification, high-level design, low-level design, and the TSP models
are written using one or more of three specification styles: informal, semiformal or formal.
These levels of formality are defined in the CC as follows.

7
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E E E E E E E
A A A A A A A
L L L L L L L
1 2 3 4 5 6 7

FSP: Informal functional specification • • •
Fully defined external interfaces •
Semiformal functional specification • •
Formal functional specification •

HLD: Descriptive high-level design •
Security enforcing high-level design • •
Semiformal high-level design •
Semiformal high-level explanation •
Formal high-level design •

LLD: Descriptive low-level design • •
Semiformal low-level design • •
Formal low-level design

IMP: Subset of the implementation of the TSF •
Implementation of the TSF •
Structured implementation of the TSF • •

RCR: Informal correspondence demonstration • • • •
Semiformal correspondence demonstration • •
Formal correspondence demonstration •

Internals: Modularity •
Reduction of complexity •
Minimisation of complexity •

SPM: Informal TOE security policy model •
Semiformal TOE security policy model
Formal TOE security policy model • • •
Table 1: ADV components for achieving particular EALs.

• An informal specification is written in natural language prose, that is, a commonly
spoken tongue used for communication among human beings; for example, English.

• A semiformal specification is written in a restricted syntax language, usually accom-
panied by supporting explanatory (informal) prose. The restricted syntax language
may be a natural language with restricted sentence structure and keywords with
special meanings, or it may be diagrammatic: for example, it could make use of
data-flow diagrams, state transition diagrams, entity-relationship diagrams, data
structure diagrams, and process or program structure diagrams.

• A formal specification is written in a notation based upon well-established mathe-
matical concepts, usually accompanied by supporting explanatory (informal) prose.
The notation should have a well-defined syntax and semantics and well-established
proof rules that support logical reasoning.

Correspondence mappings are required to prove that each of the TSF representations,
from the functional specification through to the implementation, correspond to each other;

8
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and for the security policy modelling to ensure that the TSP model corresponds to the
functional specification. A correspondence can take the form of an informal demonstration,
a semiformal demonstration, or a formal proof.

• Informal demonstration of correspondence demands only basic evidence, for example,
checklist tables or appropriate notation of design diagrams.

• Semiformal demonstration of correspondence requires a more structured approach
than is needed for an informal demonstration, lessening ambiguity that could exist
in an informal correspondence.

• Formal proof of correspondence is achieved by reasoning with the formal specifica-
tions with appropriate application of suitable proof rules. In order to verify corre-
spondence of the TSP model, desirable security properties must be expressible in
the chosen formal specification language and these properties need to be shown to
be satisfied by the formal specification.

2.4 Discussion

General guidance for evaluation of security products under the CC is provided within
the Common Methodology for Information Technology Security Evaluation (CEM). It
describes the minimum actions to be performed by an evaluator in order to conduct a
CC evaluation. The CEM currently provides guidance for evaluations against levels EAL1
through EAL4 only, with no guidance for high level evaluations requiring formal methods.
This is the guidance followed by all countries involved in the Common Criteria Recognition
Arrangement (CCRA) which was established to regulate evaluations ensuring that co-
operating countries perform evaluations to the same level of rigour.

Australia and New Zealand are both part of the CCRA and follow an additional
program, the Australasian Information Security Evaluation Program (AISEP) [5], that
provides more specific guidance as to how security evaluations are to be achieved given
the organisational structures in place within Australia and New Zealand. It was first
introduced for use within Australia in 1994, to guide compliance with the requirements
set out in the ITSEC [3]. However, since then New Zealand has joined the program and
guidance for the Common Criteria has also been incorporated.

Although evaluation levels EAL5 through EAL7 are not included in the CCRA, all
levels of the ITSEC are mutually recognised between Australia, New Zealand, and the
United Kingdom. Therefore, any security products requiring high assurance evaluations
under the AISEP are currently performed against ITSEC levels E4 to E6. The University
of Queensland is currently researching ways to improve the DSD’s internal evaluation
procedures, and hopes to investigate methodologies for CC high assurance evaluations
that require the use of formal methods for use within the AISEP in the near future.

9
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Part 3

Formal Analysis for the Common
Criteria

The CC’s formal requirements for high-assurance evaluations can be read from Table 1.
They are all concentrated in the ADV class, and can be summarised as follows (names
refer to those used in Figure 1).

• Functional Specification: formal specification of the TSF and corresponding external
interfaces: for the interfaces the specification must detail all effects, exceptions and
error messages.

• High-Level Design: a formal model which functionally decomposes the TSF into
subsystems with well-defined security functionality – an interface specification, with
details as before, is required for each sub-component.

• TSP model: a formal model of the security properties – of all “rules and character-
istics” of the TSP.

• ADV RCR: formal verification that the High-Level Design is a refinement of the
Functional Specification.

• ADV SPM: formal verification that the Functional Specification enforces the require-
ments of the TSP Model.

Thus we find that there are three major areas of formal analysis required by the CC to be
covered in such an evaluation: specification, modelling, and verification. In later parts we
develop some of the theoretical notions contained1 under these headings. In this Part we
comment on the requirements themselves, and on the nature of “ideal” tool support for
the formal analysis.

1Actually we will consider the distinction between specification and modelling as a question of detail,
and simply discuss them together.

11
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3.1 General comments on the CC

The CC has some looseness in its language, which would have to be tied down in any
given evaluation. That is not necessarily a bad thing, probably anticipating a wide range
of possible applications of the process. Here we briefly mention a few examples.

In Section 2.1 we have identified the TOE Security Policy as the collection of functional
requirements. Indeed, the TSP does not seem to have status as an independent entity in
the CC, despite the statement that the primary purpose for TOE evaluation is to ensure
that the TSP is enforced over the TOE resources. Rather, the CC elsewhere states that:

“The developer is not explicitly required to provide a TSP, as
the TSP is expressed by the TOE security functional require-
ments, through a combination of Security Function Policies
(SFPs) and the other individual requirement elements.”

There are two points to be made here.

1. The SFPs alluded to here are contained in Chapter 2 of the CC, at least a number
relating to either access control or information flow control, together with a list of
functions which can be used to enforce them.

The “preferred” approach would be to construct the TSP from the listed SFPs.
However, it is anticipated that the list may not be sufficient, and in Chapter 1
Annex A of the CC we find

“Should none of the Chapter 2 or Chapter 3 requirements
components be readily applicable to all or part of the security
requirements, the ST may state those requirements explicitly
without reference to the CC.”

The only advice here seems to be that

“Any explicit statement of TOE security functional or as-
surance requirements shall be clearly and unambiguously ex-
pressed such that evaluation and demonstration of compli-
ance is feasible. The level of detail and manner of expression
of existing CC functional or assurance requirements shall be
used as a model.”

It is expected that the actual statements would be developed in consultation with
the evaluators.

2. The “other individual requirement elements” referred to here can surely only be IT-
environment requirements. It is unlikely that assurance requirements should form
part of the TSP, since they are meta-level entailments on the process rather than
the system/product being developed. In fact, the assurance requirements can be
stated simply as the choice of EAL sought. On the other hand, it is quite reasonable
that environmental requirements should be part of the TSP: since the TOE will not
be operating in a vacuum there are certain physical assumptions whose exposure

12
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could enhance the understanding of the security provided. Again it is expected that
consultation with the evaluators will ensure that the security of the actual TOE is
not compromised by the nature of these additional requirements.

The way in which the evaluator is implicitly drawn into the development process is an
interesting aspect of the CC. In practice it must clearly be regulated to ensure the ultimate
independence of the assessment. In the Australian context, the AISEP is ideally suited to
play this oversight role.

In Figure 1 the flows included in ADV FSP, ADV HLD, ADV LLD and ADV IMP
– from the ADV hierarchy back to the ST requirements (or we can say, the TSP) –
are necessarily “informal” since the ST is also informal The CC seems to state these as
requirements on the evaluator; e.g.,

“The evaluator shall determine that the functional specifica-
tion is an accurate and complete instantiation of the TOE
security functional requirements.”

Presumably such statements imply that the evidence for the determination should be
explicitly presented to the evaluators. It is not immediately clear that added assurance
is gained from these repeated comparisons to the TSP. Referring to Figure 1, the CC
effectively requires a refinement down the vertical column.

• In the (dotted) relation between parts 3 and 4 of the ST the developer must show

– coverage: all security requirements are enforced by some TSFs, and all TSFs
are required to completely enforce those requirements; and,

– satisfaction: the security requirements are indeed met by the TSF.

• The ADV FSP must be a complete representation of TSF.

• Flows down the TSF representation hierarchy comprising the ADV are refinements.

In a strict sense then, the proof required in ADV SPM that the TSP is enforced by the
functional specification gives assurance that the lower levels of refinement enforce the TSP.
This question leads one to speculate on whether the security functionality can be entirely
presented at the highest level.

The word “correspondence” is over-loaded in the CC, but often in the final listing of
requirements of the different ADV layers it is replaced by a more precise word. This is not
done for the ADV SPM, but we have replaced it by “enforce” since there does not seem
to be any other correspondence worth proving.

The final general comment is important. The CC requirement in the ADV SPM is to
show that the TSP Model completely models the TSP “with respect to all policies of the
TSP that can be modelled”. In fact, earlier the CC states that

“modelling certain policies is currently beyond the state of the art.”

13
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It is not clear what this might mean, or whether it is EAL-dependent, and presumably
again it is the job of the evaluators to ensure that such a statement is not invoked without
good reason. Still, it seems worthwhile to stress here the opposing view that “if it can’t
be modelled it isn’t a security property”! Modelling is not an onerous task, but rather
a transcription to a mathematically precise language of one’s understanding. Being “not
amenable to modelling” then translates to being “not sufficiently understood”. Certainly
for high-grade evaluations we urge that statements which are not understood cannot serve
as security policies.

3.2 Tool support for formal analysis

Our aim in this section is to consider the formal requirements of the CC from the
point of view of what tool support would be ideal. Further comments on the CC arise
from these considerations. Any discussion of actual tools currently available will be left
for later sections.

The CC anticipates that the TOE will have a variety of functional components. Even
if the actual security functions are simple it could be quite complex to explain the entire
system. An ideal tool would certainly have a specification/modelling language which:

• includes propositional logic for reasoning;

• should be flexible and even extensible in principle to allow the description to be apt
for the given TOE;

• can reference system components in a hierarchically sensible way;

• contains at least temporal notions;

• for precision may allow explicit time/time interval references; and

• has an expressive syntax which is neatly presented in the tool’s documentation.

It would be of particular value if the language was “seamless” from specification to model:
i.e., the objects naturally discussed in the specification can be elaborated further. This
means that those objects have some dynamical status in the language, and their actual
dynamics can be revealed as the description becomes more detailed. Thus, the language
in the ideal tool should allow for:

• standard formulations of system dynamics, such as state machines; and

• mechanisms to smoothly evolve the system description from a high-level to a more
detailed dynamical level.

There are two major paradigms for specification and modelling used in the formal
methods community.

14
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1. In event-based approaches the system is modelled as communicating processes which
can themselves be understood in terms of the sequence of events (actions) in which
they can partake. The communication is through synchronisation on shared events.
Security properties can be represented as predicates which determine allowed traces.
Alternatively, the property may itself be represented as a process, any implementa-
tion of which will be acceptable as an implementation of the system.

2. As the name would suggest, in state-based approaches the system state (the “mem-
ory” as well as inputs and outputs) is explicitly modelled, and system actions are
then modelled as functions on state. Typically such models would have explicit vari-
ables which encode the state data. The actual representation of state depends on the
nature of the problem: e.g., for incorporating temporal notions one could represent
the state as a sequence capturing successive snapshots of the configuration held by
the system variables. Security properties can be represented as state predicates.

Not surprisingly, event-based approaches are suited to systems which look like communi-
cating processes – as we will discuss later. In fact, since the essence of the description is
in terms of sequences of system actions, these approaches provide a simple specification
of the order of critical events. Thus, where the order of events is crucial, this can be
effectively applied as a specification language.

State-based approaches, however, are more generic, and have the added advantage of
incorporating a natural attack on any mathematical or physical problem: clarity ensues
from carefully stating the variables, and the functions between them. The properties when
written down can then be understood almost by inspection. In contrast, when a generic
system is forced to fit the communicating processes paradigm for the actual system model,
then the process description of properties can be quite esoteric. Moreover, even though
the analysis of systems which look like communicating processes can be streamlined, the
apparently unphysical modelling with interleaving and instantaneous synchronisation is
itself a barrier to system understanding. Although the hook-up of sub-components in the
state-based approach can be very fiddly, the principle that “making such technicalities
explicit makes the overall system easier to understand” would make this a virtue – if the
subsequent analysis does not degenerate into a mess.

The CC demands that the external interface be specified for all the TSF (or any of
their sub-components). This would involve the boundary to the environment, as well as
the boundary to other functions (or components), and fits very well with the state-based
notion of writing down the system variables. A common state-based system description is
the I/O machine: the system dynamics is described to the degree of detail required as, for
example, a relation between the system’s inputs and outputs. This leads naturally to the
so-called dataflow decomposition, which is a functional decomposition into further I/O sub-
components blocks joined by lines representing the state transferred around the system.
Ultimately, an I/O component can be replaced (refined to) a state machine where the
dynamics are fully specified (the dynamical relation is determined by a function). Again,
the CC requirements for functional decomposition make this a very natural approach. In
terms of Figure 1 this is “horizontal” development: development within a given layer of
the TSF representation hierarchy comprising the ADV class.

A related development, which becomes available in the state-based approach, is “ver-
tical” in the sense of Figure 1: the refinement of the system properties themselves. In
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this way, the properties induce a hierarchy in which the specification sits at the top. The
vertical and horizontal hierarchies can intersect through the sub-component specifications.

From this discussion we may deduce the following additional requirements for the ideal
tool to support CC evaluation development.

• The tool must support the description of interacting concurrent systems.

• A requirement of general applicability would tend to favour the state-based approach.

• In that case the tool should support the hook-up of sub-components so that the
developer is not mired in trivial but messy analysis.

• The state-based approach is also favoured when the tool supports the dataflow de-
composition, producing a “horizontal” system hierarchy which the tool could interact
with nicely.

• The tool should support the refinement of system properties, producing a “vertical”
hierarchy.

• At least part of the nice interaction with these hierarchies is that the tool should
automatically produce documentation which reflects them, with a variety of different
views allowed to bring out the best explanations as the setting changes.

The formal verification effort required by the CC then becomes the problem of filling
in the arguments which ensure that the steps in the hierarchy are actual refinements. One
could in principle carry out such arguments with pen and paper. For the evaluators this
is quite disadvantageous, because it forces them to check very low-level logical reasoning.
An argument can be very persuasive, but typically a large amount of further detail and
reasoning is required to furnish a proof. For example, checking a case analysis of, say,
100 cases with intricate arguments for each would be a huge burden if there was no level
at which the details could be trusted to be correct. Thus, we would certainly expect our
ideal tool to provide a formal theorem prover.

Proof tools utilise the precision of formal language to implement low-level reasoning
via pattern-matching to logical inference rules. The set of rules can be remarkably small,
and their consistency established by meta-reasoning. From these rules, quite powerful
modelling logics can be constructed. Moreover, the low-level rules can be combined to
produce proof tactics tailored to a given modelling paradigm. The evaluators of a proof
presented from a proof tool which they understood could trust in the correctness of certain
details which they knew the proof tool handled well.

The most useful proof tools along these lines are interactive, since they require the user
to input each tactic applied in the proof and produce a linear script which summarises the
resulting proof. At the lowest level the tool will produce a huge list of low-level tactics for
even quite straightforward proofs. The evaluators are then in danger of losing the actual
argument, while checking the low-level application. Of course, the advantage to be gained
by using the proof tool was that the evaluators could trust the proof tool to handle that
level consistently. However, we would argue against blind acceptance of huge collection of
tactics with “qed” at the end. The evaluators must be able to see the argument clearly
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developed. There must be a level of granularity at which the evaluator knows that the
statement given is correct because it is true, and the subsequent (probably essentially
one line) formal proof is simply part of the tool’s book-keeping which ensures the whole
result is consistent. At the very least, this layer of granularity should be manifest in the
presentation of the verification given by the developers. The ideal tool would support it.

There are some obvious desiderata for the ideal tool support of verification.

• The tool must be based in a formal proof tool.

• The proof tool must then be generic – allowing extensions to treat systems and
arguments as they are developed.

• Consistent with our earlier discussion, the entire modelling exercise should be under
the control of that proof tool.

• The tool should have well-developed reasoning packages for each modelling paradigm
which it supports. These packages would include tactics which work at a variety of
levels to ensure the appropriate level of granularity in the presentation of the proofs.

• The tool should provide an interaction to these tactics, and the proof tool in general,
which promotes (or almost enforces) the appropriate presentation of the argument.

• The documentation should again reflect this interaction, and display the argument
appropriately.

• The tool should reflect when an entire project has been successfully submitted to
the proof tool. In particular, there should be normative documentation which builds
the entire formal construction in the consistent manner required by the proof tool
(as well as that containing the different views discussed earlier).
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Part 4

Formal Specification

Formal specification languages can be divided into two main groups: event-based and state-
based. As we will see, state-based languages are a natural setting for describing devices,
whilst event-based languages are best used to describe the communication between devices.

Sections 4.1 and 4.2 introduce the respective approaches and give an example of a
specification in each to highlight their relative strengths. Section 4.3 discusses current
research on integrating the two approaches. Finally, Section 4.4 provides conclusions and
further discussion.

4.1 Event-Based Specification

Many systems can be viewed as being composed of several sub-systems or processes
that interact concurrently with each other and their environment. Paradigms such as Petri
Nets [36] and Process Algebras such as CSP [21, 38], CCS [32], and the pi calculus [33], are
notations that take this view towards system specification. Individual processes are mod-
elled as sequences of system events, and then multiple processes are specified to interact
concurrently in order to achieve the desired behaviour of the entire system.

Security protocols are obvious examples of systems that rely on successful interaction
between several communicating processes. An individual instance of a key distribution
protocol usually involves two to three processes all working together to establish a secure
means of communication between them. The most successful process algebra currently
used for modelling security protocols is the CSP approach presented by Ryan et al. [39].

The following example demonstrates the use of CSP and its concise way of captur-
ing security properties using as an example, a simple protocol that transmits a binary
acknowledgement that is meant to be kept secret from a potential eavesdropper.

There are three agents: Alice and Bob who are trying to communicate securely, and
Eve who is eavesdropping on the communication medium. The sets of events available to
each agent process are defined in their alphabets. Agent Alice A has two operations s0
and s1 representing sending of the 0 and 1 bits respectively, Bob has two operations for
receiving the bits, and Eve has two operations for observing the bits.

The alphabets of Alice (A), Bob (B) and Eve (E) are thus:
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αA = {s0, s1}
αB = {r0, r1}
αE = {e0, e1}

Alice can either send a 0 and resume the role of process A or (‘2’) send a 1 and resume
the role of process A. Similarly, Bob can either receive a 0 or a 1 and resume the role of
process B , and Eve can either observe a 0 or a 1 and then resume the role of process E .
These behaviours are specified below.

A = s0 → A 2 s1 → A
B = r0 → B 2 r1 → B
E = e0 → E 2 e1 → E

We want to ensure that Bob receives transmissions correctly from Alice, and that if
Eve is listening, she cannot make sense of the acknowledgement sent. This property is
captured in the specification of the channel CHAN below.

CHAN = s0 → (r0 → CHAN
2 e0 → r0 → CHAN
2 e1 → r0 → CHAN )

2 s1 → (r1 → CHAN
2 e0 → r1 → CHAN
2 e1 → r1 → CHAN )

This means that although Bob always receives Alice’s transmissions correctly, Eve
always has the option of observing either a 0 or a 1 regardless of what value Alice actually
sends.

The entire system is then defined as the concurrent interaction between the three agent
processes and the channel process. The parallel operator ‘‖’ ensures that processes agree
on events that occur.

(A ‖ B ‖ E ) ‖ CHAN

None of Alice’s or Bob’s events are included in Eve’s alphabet and hence do not make
up any part of Eve’s specification. This means that she cannot agree on any of these
events, so she has no way of deriving the transmitted value by observing the channel.
Thus, we have abstractly specified the concept of encryption for this particular protocol.

Agent processes and their alphabets must be stated clearly to create the context that
makes CHAN secure. If we don’t specify that Eve’s alphabet consists of only e0 and e1

events, then an eavesdropper that can see s0 and s1 events,

E = s0 → e0 → E
2s1 → e1 → E ,

observes the transmission perfectly whilst satisfying the behaviour of CHAN .

20



DSTO–GD–0456

4.2 State-Based Specification

Alternatively, a system can be viewed as a single ‘machine’ with an internal state and
a set of operations that can be performed on the state in order to change it. Formal nota-
tions that take this view towards system specification are usually based on set-theory and
logic which means that critical requirements are specified using mathematical predicates
that place restrictions on variables and relationships within the state. Examples of such
notations are Z [43], Object-Z [18], B [6], and VDM [10], and tools such as DOVE [11]. Z is
the most well-known state-based method. The B method [6] is becoming popular because
it was created with machine-readability in mind and hence is accompanied by strong tool
support for verification.

The author has demonstrated a way in which the Z specification language can be used
for specification of security protocols [26, 25]. This method has been used recently to verify
a new attack found on what was thought to be a secure version of the Needham-Schroeder
security protocol.

Instead of capturing the concept of encryption as is demonstrated in the CSP example
above, specific properties of the encryption function are made explicit. For example,
assuming the existence of a set of plaintext messages PT and ciphertext messages CT , an
encryption function and corresponding decryption function could be specified as follows:

encrypt : PT � CT
decrypt : CT � PT

decrypt = encrypt−1

The functions are injective (as represented by the symbol ‘�’), which means that each
plaintext message has a unique ciphertext representation and vice versa; and because the
decrypt function is the inverse of the encrypt function (decrypt = encrypt−1), decryption
of a ciphertext message will produce the original corresponding plaintext message.

These functions can then be used in a specification of a protocol that transmits en-
crypted messages. For example, given the following state schema InTransit that keeps the
value of the ciphertext message msg currently in transit,

InTransit
msg : CT

the following send operation denotes the transmission of a given message msg? in its
encrypted form. We must assume that the encryption function is not known to any
unauthorised eavesdroppers for the message to remain secret.

send
∆InTransit
msg? : MSG

msg ′ = encrypt(msg?)

The Z symbol ‘∆’ declares the pre-state and post-state variables for the state schema
InTransit , indicating that the state may change by the operation. Pre-state variables are
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undecorated and hold the value of the variables before execution of the operation, whereas
post-state variables are decorated with a prime and denote the value of the variables after
execution of the operation. Therefore, the variable msg ′ which is specified in the predicate
part of the schema contains the encrypted message that is being sent.

A receive operation can then be specified to take the message in transit and decrypt
it to output the original message msg !. (The Z symbol ‘Ξ’ ensures that state variables
remain unchanged.)

receive
ΞInTransit
msg ! : MSG

msg ! = decrypt(msg)

There is more than one way to specify functional behaviour that achieves non-functional
(see Section 5.5) security requirements. For example, to state explicitly that the system
uses a key-encryption function, we specify the function as follows, producing a unique
encryption function for each key (from the assumed set of keys KEY ) used:

encrypt : KEY � (PT � CT )
decrypt : KEY � (CT � PT )

∀ k : KEY • decrypt(k) = encrypt(k)−1

These functions will also keep transmitted information from being observed by unautho-
rised parties. It is merely a more explicit variation that requires a different assumption;
that is, that eavesdroppers do not know the key used for encryption.

4.3 Integrated Methods

Notations combining both state-based specification languages and process algebras are
emerging in order to bring together the best of the two worlds. In particular, there has
been substantial research on combining Z and its object-oriented equivalent, Object-Z,
with process algebras such as CCS and CSP [19]. For example, Smith has combined
Object-Z with CSP, and Mahony and Dong have combined Object-Z with Timed CSP
(TCOZ).

There are two significant aspects that differ amongst the resulting combinations. These
are

• whether the formalisms have been combined syntactically or semantically, and

• how the process algebra events correspond to the state-based operations.

The language currently looked upon most favourably for its potential use by developers
of safety- and security-critical systems in the UK (for example, QinetiQ, DSTL, and Praxis
Critical Systems) is Circus [48]. It combines Z and CSP at the syntactical level and
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employs the multi event approach. These design decisions make the language one of the
most flexible integration, and also make it a suitable language for refinement, an aspect
of formal development in which other combined methods have not been so successful.
Mahony and Dong’s TCOZ is combined in a similar way.

4.4 Discussion

Sections 4.1 and 4.2 demonstrate, by way of example, the fundamental differences be-
tween the approaches taken by the CSP and Z languages. Process algebras are useful for
expressing interactions between sub-systems of a larger system and for expressing critical
requirements based on how they should interact. At this abstract level the properties can
be concise and clever, although sometimes indirect with little indication as to how the re-
quirements could be achieved. On the other hand, state-based methods are not convenient
for specifying what sequences of operations are allowed by a system; however, they are
extremely useful for expressing functional requirements of specific actions that collectively
ensure critical requirements are achieved, without having to give implementation details.
Either of the two approaches to specification can be suitable for producing quality spec-
ifications, but evidently accentuate different aspects of a system. An integration of the
two methods may prove to be most effective; however, this is still a young area of research
that must be explored.
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Part 5

Formal Verification

Verification may be performed on specifications to prove that certain desirable properties
hold. The particular type of verification required by the Common Criteria is a series of
correspondence proofs between several models of the one system. Given two such models,
a correspondence proof will confirm that certain properties and behaviours specified in
one of the models are correctly carried through to the other. This type of verification is
known in the formal methods world as a refinement.

The two main approaches to verification are model checking and theorem proving.
Sections 5.1 to 5.4 summarise the advantages and disadvantages pertaining to each and
identify some supporting tools, Section 5.5 notes known difficulties associated with refining
security functions, and Section 5.6 discusses how model checking and theorem proving
would compare when incorporated into a methodology for the Common Criteria.

5.1 Model Checking

A model is an abstraction of a system that simulates the system’s behaviour whilst
aiming to achieve certain requirements (often temporal) identified by a specification. Given
such a model, model checking [12] involves an exhaustive search for every possible trace
of operations in order to examine whether the specified requirements always hold. Once
the search has begun, it is performed automatically with no need for any user interaction.
If the properties hold, the analysis will simply terminate, otherwise a counterexample is
presented, providing valuable feedback that helps the developers determine the cause of
the problem. This method has been successfully applied to complex industrial designs
such as sequential circuits, communication protocols and digital controllers [13].

An exhaustive search is only possible if the state space is finite, otherwise the search
would theoretically go on forever — in practice, model checkers run out of space and crash.
Furthermore, even with large finite models the checker may not have enough memory to
complete the analysis or could run for inconvenient periods of time. These issues are caused
by what is known as the state explosion problem. To counter this problem, developers
must be clever in devising a model that is kind to the model checker used, for example,
sometimes an infinite domain must be abstracted into a finite one. This process can be
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time consuming and can be harmful if information critical for an effective analysis is lost
in the abstraction.

One of the most notable advances in the field was the introduction of symbolic model
checking by McMillan [12]. He realised that by using a symbolic representation for the
state transition graphs, much larger systems could be verified. This and other technical
advances in the available tools has made model checking more attractive for use in industry.
Hence, symbolic model checking has been used by a number of major companies including
Intel, Motorola, ATT, Fujitsu, and Siemens for verifying designs [13].

5.2 Model Checking Tools

One of the most popular symbolic model checkers is the Symbolic Model Verifier
(SMV) [12] produced by McMillan as a result of his research findings. The SMV system
has been widely distributed and has been used for formal verification of a large number of
academic and industrial examples. For example, the SMV model checker was applied to a
model of the cache coherence protocol described in the IEEE Futurebus+ standard (IEEE
Standard 896.1-1991) in order to prove that the system satisfied a formal specification of
cache coherence. A number of previously undetected errors were revealed. According to
Clarke, this appeared to be the first time that an automatic verification tool had been
used to find errors in an IEEE standard [12, pp. 7–8].

The School of Information Technology and Electrical Engineering at The University
of Queensland has recently investigated the development of a suite of tools for automatic
generation and verification of signalling logic designs for Queensland Rail. The tool used
for verification is a new and extended version of SMV called NuSMV. It is used to ensure
that the signalling logic satisfies signalling safety principles, for example, that no collisions
or derailments can occur.

Other popular model checking tools include Spin, Step, murphi, Java Pathfinder, and
µcke [41], and the Failure/Divergences Refinement tool (FDR) [38] which was made specif-
ically to be used in conjunction with CSP.

FDR is the tool used by Ryan and Schneider [39] to analyse their CSP specifications of
security protocols. FDR obtains its results by comparing two CSP models, an implementa-
tion and a specification. For checking security protocols, the implementation describes the
system in terms of agent and intruder actions, and the specification describes the desired
security properties. FDR checks that all possible traces of the implementation are allowed
by the specification, that is, that the implementation is a refinement (see Section 5.5) of
the specification. If the check fails, a counterexample is presented, revealing those intruder
actions that led to the success of the attack. Therefore, given a weak design, failure of the
check indicates a need to strengthen the protocol. Alternatively, given a strong design,
various mutants (weakenings) can be checked in order to reveal overkill, or to reinforce
and make clear the need for certain design decisions [39, pp. 36–37].
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5.3 Theorem Proving

In contrast, the theorem proving [41] approach is popular due to its ability to reason
with large and even infinite state spaces, as it does not suffer from the state explosion
problem. Instead of analysing every possible trace of operations within a system model, a
theorem prover conducts verification through inductive reasoning of the system’s specifi-
cation. Therefore, the notation used for the specification is usually a logic with a concrete
syntax and semantics with which to reason.

Interactive theorem provers require large amounts of expert user guidance in order to
perform the verification proofs; even the smallest of proof steps often need to be applied by
the user, and the proofs may take up to weeks or months to complete. To help automate
some of these smaller steps, tactics are devised that deduce what the prover should do in
certain situations. Libraries of such tactics can be produced by users for specific applica-
tions. Automated theorem provers exist but their languages are restrictive, and they are
often only successful for verifying small systems.

5.4 Theorem Proving Tools

One of the most popular theorem provers and the most prominently used in the area
of security is the Isabelle theorem prover [34]. It has been used by Paulson [35] to prove
desirable properties of security protocols. Using his method, he was able to discover a
known attack on the Needham-Schroeder protocol, and in addition he discovered a new
attack on a variant of the Otway-Rees protocol. With Bella, he has investigated verification
of the Kerberos protocol and verified the SET registration protocols [9].

Another popular theorem prover is the Prototype Verification System (PVS) which
has been applied successfully to large and difficult applications in both academic and
industrial settings [16]. For example, it has been used to verify the microcode for selected
instructions of a complex, pipelined, commercial microprocessor having 500,000 transistors
where seeded and unseeded errors were found, and it has also been used as an aid to the
requirements analysis of critical, system-level fault protection software on the Cassini
spacecraft [28]. Krishnan [37] has used PVS to verify a subset of the SET protocols and
NetBill to ensure that they achieve certain secrecy properties.

The University of Queensland has developed a theorem prover called Ergo. It provides
us with the ability to verify specifications for correctness, and also to refine specifications
into programs. Ergo has a Z theory for reasoning with Z specifications and a B theory
is currently being devised. Johnston [23] has used the Ergo theorem prover to develop a
cryptographic protocol by stepwise data refinement from a Z specification.

Tools such as Isabelle, PVS and Ergo, are interactive theorem provers in their own
right. That is, the theorem provers’ notations are general and not restricted to a par-
ticular method of specification. Therefore, it is often the case that a conversion (manual
or automatic) is needed to produce the input language for the desired prover from the
specification. Purpose built theorem provers also exist to support particular specification
languages, such as Z/EVES [40] and ProofPower [24] for Z, and the theorem prover pro-
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vided within the B toolkit [6]. Woodcock and Cavalcanti [48] state that Circus models can
be analysed with almost no changes using Z/EVES.

DSTO’s DOVE [11] tool provides a graphical environment for specification and subse-
quent verification of systems. Specifications are primarily produced by constructing state
machine diagrams. However, whilst building the diagrams, the user can supply infor-
mation regarding states and transitions, aiding the parallel construction of a lower level
formal model that can be verified using the integrated Isabelle theorem prover. The tool
also provides automatic generation of documentation to accompany the formal specifica-
tions and proofs. This aspect is particularly useful for providing evidence to independent
third parties such as those needed for security evaluations. DOVE was successfully used
for developing the Starlight security products that have been evaluated to ITSEC E6 (see
Section 6.3). It has also been used by McCarthy [31] to analyse security in the context of
classified rooms.

5.5 Refining Security Properties

There are two types of system requirements: functional and non-functional require-
ments. Functional requirements are constraints on the behaviour of operations, whereas
non-functional requirements are constraints on the results of one or a series of operations,
or on the system as a whole [14]. Properties referred to as security properties are generally
non-functional. The problem with this is that functional refinement does not necessarily
preserve non-functional security properties [29, 20]. Lowe [27] demonstrates this using a
simple CSP example given in Section 5.5.1.

Collinson [14] and CESG’s Manual “F” [7, 15] present an approach using Z in which the
functional specification of a system is produced, and then the security model is expressed
in terms of this specification. Unfortunately, it has since been revealed that the proofs
required are too complex and that Z is inappropriate for modelling non-functional security
properties [47].

Logica used Z to develop an electronic cash system for smart cards called Mondex,
and the supporting operating system called Multos [44]. These systems were evaluated
against the ITSEC and certified to level E6. All but one of the security requirements were
functional requirements. This meant that Z was sufficient for almost the entire develop-
ment because functional requirements are preserved by refinement. The one non-functional
security requirement concerning information flow was captured using Z, with additional
CSP to constrain allowed traces of events. In order to refine this property, an unwinding
theorem was used to derive equivalent properties of individual state transitions [45].

5.5.1 Lowe’s Refinement Example

Lowe [27] demonstrates that non-functional security properties are not necessarily pre-
served by refinement using a simple CSP example.

There are two agents: Hugh who works in a high security domain, and Lois who
works in a low security domain. Hugh’s alphabet (the set of events visible to Hugh)
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H = {h} consists of one high event h, and Lois’ alphabet L = {l} consists of one low event
l . Some systems insist that no information about events performed in a high security
domain should be observable by agents residing in a low security domain. This is a non-
interference property.

In such a system, a process P1 that performs event h followed by event l and then
stops,

P1 = h → l → STOP ,

is insecure since Lois’ event can only occur after Hugh’s, hence she can always identify
when Hugh has performed an event. However, a process P2 that performs event h followed
by event l or (2) only event l and then stops,

P2 = (h → l → STOP) 2 (l → STOP) ,

is secure since l can always occur regardless of h revealing no information to Lois about
Hugh’s actions.

Consider now a process Q1

Q1 = h → (l → STOP u STOP)
2

(l → STOP u STOP)

that will non-deterministically ‘u’, either allow Lois to perform event l or will have Lois’
event refused, whether or not Hugh performs an h.

Like P2, Q1 should be secure. However, if the first non-deterministic choice is im-
plemented to always select its first argument, and the second non-deterministic choice is
implemented to always select its second argument, then Q1 will act like

h → l → STOP 2 STOP
= h → l → STOP
= P1 .

So although Q1 is considered secure, one of its refinements is not.

5.6 Discussion

Because model checking can be performed automatically, it is often considered to be
preferable to theorem proving whenever it can be applied [12, p. 3]. However, model
checkers are unable to produce a formal proof that can be checked externally. If a model
does not satisfy the specification, a counterexample is presented. But if it does, the tool
simply terminates and the user must trust the implementation of the tool [41, p. 6].

Some form of formal verification is required to adhere to the requirements set out
in the Common Criteria. If theorem proving is used, the evaluators could be provided
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with a proof script that they themselves may follow for satisfaction in the verification.
On the other hand, if model checking is used, either the evaluators would have to be
confident in the ability of the tool, or they could perform some checks of their own on
mutants (weakenings) of the models. These tests should present counterexamples that
may convince the evaluators that the original models were correctly verified; however, it
would not be feasible for evaluators to check every possible mutation.

30



DSTO–GD–0456

Part 6

Examples

A wide range of security-enforcing hardware and software products have been evaluated
at varying levels spanning several criteria. In the following sections we list summarise
what formal methods are used by various organisations for developing security products
to achieve high assurance levels. There are probably more examples that would be relevant;
however, due to confidentiality restrictions they are not easily accessible.

6.1 Naval Research Laboratories

The Naval Research Laboratory (NRL) uses a formal method called SCR for developing
security products to high assurance levels. SCR is a tabular formal method used for
specifying and analysing operational requirements of safety-critical control systems,

Kirby, Jr. et al. [22] applied NRL’s SCR requirements method to a US Navy COMSEC
device that provides cryptographic processing for a US Navy radio receiver. A subset of
the informal requirements specification was translated into a formal SCR specification and
then several analyses were performed using the SCR* toolset revealing some weaknesses.

The SCR* toolset provides several analysis techniques for verification of an SCR spec-
ification, including both model checking and theorem proving. Each type of analysis has
advantages and disadvantages. Therefore, applying several types of analyses helps to
identify different types of flaws.

6.2 Logica

MULTOS [30] is an operating system specifically designed to exist on a smartcard
and Mondex is an electronic cash application that runs on MULTOS allowing smart cards
to act exactly like cash, offering immediate transfer of value without signature, PIN,
or transaction authorisation. These applications were developed by Logica using the Z
specification language and were evaluated to ITSEC level E6 [44] (see Section 5.5).
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6.3 Defence Science & Technology Organisation

The Starlight Interactive Link [17] security devices — consisting of a data diode, a
multiple computer switch, and a key board switch — were developed by the Defence
Science & Technology Organisation to aid information security in a multi-level security
environment.

The Z notation was initially used for the formal specifications, however, there was
little state to model and the security properties were based on information flow (a non-
interference policy model) rather than state. Therefore, there was little to be gained by a
state machine view, so the main modelling for both the policy model and the architecture
was carried out using the HOL logic of the Isabelle theorem prover. The DOVE tool was
used as an interface to document the proofs.

6.4 Compucat

Compucat has developed a Serial Data Regulator (SDR) or data diode, and a secure
X.25 Packet Assembler-Disassembler (CSX-100) and both have been evaluated to ITSEC
level E6. The formal methodology applied used set theory in conjunction with a modelling
approach based upon the work of Bell and La Padula [8].
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Part 7

Conclusion

The Common Criteria demands formal methods to be used for the development of secu-
rity products in order for them to be evaluated to the highest assurance levels. Formal
specification is required to produce precise descriptions of the system and verification is
required to prove that all specifications correspond to each other. Currently there is no
standard methodology in place to achieve this.

The two most popular approaches to specification are event-based and state-based
methods. Event-based languages are convenient for describing systems consisting of con-
currently running processes and for stating non-functional properties regarding how such
processes are to interact with each other. Whereas state-based methods are convenient
for describing the specific functional properties of individual operations that collectively
ensure critical non-functional requirements are achieved. Researchers are currently inves-
tigating integrations of both approaches to bring together the best of the two worlds.

Model checking and theorem proving are the two most popular approaches to formal
verification. Model checking provides an automatic but invisible verification of finite mod-
els that requires significant user expertise in producing models in a way so as to reduce
the state explosion problem. Whereas theorem proving provides a manual and visible
verification of infinite models requiring significant user expertise in performing the proofs.

Security properties can be difficult to refine as they are often expressed in a non-
functional way. It has been shown that a security policy consisting of functional security
properties is more successfully refined than a security policy consisting of non-functional
security properties.

Formal methods currently used for formal specification and verification of security
products to achieve high levels of assurance are SCR used by NRL, Z used by Logica, and
DOVE used by DSTO.
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